Cerámica.

Principales materiales cerámicos utilizados en la industria y algo mas.

Materiales y aplicaciones avanzadas

Los cerámicos avanzados incluyen los carburos, los boruros, los nitruros y los óxidos. Generalmente estos materiales se seleccionan tanto por sus propiedades mecánicas como físicas a altas temperaturas.

Un extenso grupo de cerámicos avanzados se usa en aplicaciones no estructurales, aprovechando sus únicas propiedades magnéticas, electrónicas y ópticas, su buena resistencia a la corrosión a alta temperatura, su capacidad de servir como sensores en la detección de gases peligrosos y por ser adecuados para dispositivos de prótesis y otros “componentes de repuesto para el ser humano”.La Alúmina(Al2O3): Se utiliza para contener metal fundido o para operar a alta temperatura donde se requiere buena resistencia.

- El Nitruro De Aluminio(AIN): Proporciona un buen aislante eléctrico, pero tiene alta conductividad térmica. Dado que su coeficiente de expansión térmica es similar al del silicio, el AIN es un sustituto adecuado del Al2O3 como material de sustrato para circuitos integrados.

El Carburo De Boro(B4C): Es muy duro y aún así extraordinariamente ligero. Además de su utilización como blindaje nuclear, encuentra uso en aplicaciones que requieren excelente resistencia a la abrasión, como parte en placas blindadas.

- El Carburo De Silicio(SiC): tiene una resistencia a la oxidación extraordinaria a temperatura incluso por encima del punto de fusión del acero. A menudo el SiC se utiliza como recubrimiento para metales, para compuestos de carbono y otros cerámicos a temperaturas extremas.

- El Nitruro De Silicio(Si3N4): Son candidatos para componentes de motores automotrices y de turbina de gas, permitiendo temperaturas de operación más elevadas y mejores eficiencias de combustible, con menor peso que los metales y aleaciones tradicionales.

- El Sialón: Se forma cuando el aluminio y el oxígeno reemplazan parcialmente al silicio y al nitrógeno en el nitruro de silicio. Es relativamente ligero, con un coeficiente de expansión térmica bajo, buena tenacidad a la fractura, y una resistencia superior a la de muchos de los demás cerámicos avanzados comunes. El sialón puede encintrar aplicaciones en componentes para motor y otras aplicaciones, que a su vez involucran altas temperaturas y condiciones severas de desgaste.

- El Boruro De Titanio(TiB2): Es un buen conductor de la electricidad y del calor. Además tiene excelente tenacidad. El TiB2, junto con el carburo de silicio y la alúmina, son aplicaciones en la producción de blindajes.

- La Urania(UO2): Utilizado como combustible de reactores nucleares.

MATERIALES REFRACTARIOS

Son componentes importantes del equipo utilizado en la producción, refinación y manejo de metales y vidrios. Los refractarios deben soportar altas temperaturas sin corroerse o debilitarse por el entorno. Los refractarios típicos están compuestos por diversas partículas gruesas de óxido aglutinadas con un material refractario más fino. Este segundo material se funde al hornearse y proporciona la unión. En algunos casos, los ladrillos refractarios contienen aprox. de 20 a 25% de porosidad aparente, a fin de conseguir un mejor aislamiento térmico.

Los refractarios se dividen en tres grupos: ácidosbásicos y neutros con base en su comportamiento químico.

Refractarios ácidos: Incluyen las arcilla de sílice, de alúmina y refractarios de arcilla. El sílice puro a veces se utiliza para contener metal derretido. Los refractarios de arcilla por lo general son relativamente débiles, pero poco costosos. Contenidos de alúmina por arriba de aprox. 50% constituyen los refractarios de alta alúmina.

Refractarios Básicos: Varios refractarios se basan en el MgO(magnesia o periclasa) El MgO puro tiene un punto de fusión alto, buena refractariedad buena resistencia al ataque por los entornos que a menudo se encuentran en los procesos de fabricación de acero. Típicamente, los refractarios básicos son más costosos que los refractarios ácidos.

Refractarios Neutros: Normalmente incluyen la cromatina y la magnesita, pueden ser utilizados para separar refractarios ácidos de los básicos, impidiendo que uno ataque al otro.

Refractarios Especiales: El carbono, el grafito, es utilizado en muchas aplicaciones refractarias, particularmente cuando no hay oxígeno fácilmente disponible. Estos materiales refractarios incluyen la circonia (ZrO2), el circón (ZrO2.SiO2) y una diversidad de nitruros, carburos y boruros.

OTROS MATERIALES CERÁMICOS Y SUS APLICACIONES

Cementos:

En un proceso conocido como cementación, las materias primas cerámicas se unen utilizando un aglutinante que no requiere horneado o sinterizado. Una reacción química convierte una resina líquida en un sólido que une las partículas. En el caso del silicato de sodio, la introducción de gas CO2 actúa como catalizador para deshidratar la solución de silicato de sodio y convertirla en un material vítreo.

La reacción de cementación más común e importante ocurre en el cemento Pórtland, utilizado para producir el concreto.

Recubrimientos:

Con frecuencia los productos cerámicos se utilizan como recubrimientos protectores de otros materiales. Los recubrimientos comerciales comunes incluyen los vidriados y los esmaltados. Los vidriados se aplican sobre la superficie de un material cerámico para sellar un cuerpo de arcilla permeable, para dar protección y decorar, o para fines especiales. Los esmaltados se aplican sobre superficies metálicas. Los esmaltados y vidriados son productos de arcilla que se vitrifican fácilmente durante el horneado.

Mediante la adición de otros minerales se pueden producir en los vidriados y esmaltados colores especiales.

Uno de los problemas que tienen los vidriados y los esmaltados son las grietas o cuarteduras superficiales que ocurren cuando el vidriado tiene un coeficiente de expansión térmica distinto al del material subyacente.

Para materiales cerámicos avanzados y para materiales de operación a alta temperatura se utilizan recubrimientos de SiC para mejorar su resistencia a la oxidación. A las superaleaciones base níquel se les puede aplicar recubrimientos de circonia, como barreras térmicas que protejen al metal contra la fusión o contra reacciones adversas.

Fibras

A partir de materiales cerámicos se producen fibras para diversos usos como esfuerzo de materiales compuestos, para ser tejidas en telas o para uso en sistemas de fibras ópticas. Las fibras de vidrio de borosilicato, las más comunes, proporcionan resistencia y rigidez a la fibra de vidrio. También se pueden producir fibras con una diversidad de materiales cerámicos, incluyendo alúmina, carburo de silicio y carburo de boro.

Superconductividad:

Fenómeno que presentan algunos conductores que no ofrecen resistencia al flujo de corriente eléctrica. Los superconductores también presentan un acusado diamagnetismo, es decir, son repelidos por los campos magnéticos. La superconductividad sólo se manifiesta por debajo de una determinada temperatura crítica Tc y un campo magnético crítico Hc, que dependen del material utilizado. Antes de 1986, el valor más elevado de Tc que se conocía era de 23,2 K (-249,95 °C), en determinados compuestos de niobio-germanio. Para alcanzar temperaturas tan bajas se empleaba helio líquido, un refrigerante caro y poco eficaz. La necesidad de temperaturas tan reducidas limita mucho la eficiencia global de una máquina con elementos superconductores, por lo que no se consideraba práctico el funcionamiento a gran escala de estas máquinas. Sin embargo, en 1986, los descubrimientos llevados a cabo en varias universidades y centros de investigación comenzaron a cambiar radicalmente la situación. Se descubrió que algunos compuestos cerámicos de óxidos metálicos que contenían lantánidos eran superconductores a temperaturas suficientemente elevadas como para poder usar nitrógeno líquido como refrigerante. Como el nitrógeno líquido, cuya temperatura es de 77 K (-196 °C), enfría con una eficacia 20 veces mayor que el helio líquido y un precio 10 veces menor, muchas aplicaciones potenciales empezaron a parecer económicamente viables. En 1987 se reveló que la fórmula de uno de estos compuestos superconductores, con una Tc de 94 K (-179 °C), era (Y0,6Ba0,4)2CuO4. Desde entonces se ha demostrado que los lantánidos no son un componente esencial, ya que en 1988 se descubrió un óxido de cobre y talio-bario-calcio con una Tc de 125 K (-148 °C).

VIDRIOS

El vidrio es un liquido sobreenfriado y se encuentra en un estado metaestable, osea puede pasar a un estado de menor energía, solo si pasa por un estado de mayor energía. El vidrio fundido se enfría lentamente, para evitar su cristalización, es un material cerámico obtenido a partir de materiales inorgánicos a altas temperaturas, se distingue de otras cerámicas en que sus constituyentes son calentados hasta fusión y después enfriados hasta un estado rígido sin cristalización.

En un vidrio las moléculas cambian su orientación de una manera aleatoria en todo el sólido, es decir su estructura es amorfa.

Solo se conocen tres componentes minerales binarios, que pueden pasar del estado fundido a la temperatura ambiente sin cristalizar; Sílice, (SiO2), Anhídrido Bórico (B2O3 ) y Anhídrido Fosforico ( B 2 O 5 ).

Materia Prima:

Las materias usadas para fabricar vidrio son:

  • Vitrificantes: tales como La sílice, con punto de fusión 1.720 °C.

  • Fundentes: Los mas usados son el Sulfato de Sodio y el Carbonato Sodico, son fácilmente atacables los vidrios formados por vitrificantes y fundentes.

  • Estabilizantes: Se añaden para obtener vidrios mas estables y menos atacables. Los mas usados son: Carbonato Calcico, Carbonato de Megnesio, Oxido de Bario(Barita), Oxido de Aluminio(Alumina), Oxido de Plomo y Oxido de Cinc.

  • Accesorias: Pueden ser afinantes , decolorantes, opalescentes o colorantes.

ESTRUCTURA DEL VIDRIO

 

Óxidos formadores de vidrio: Muchos vidrios inorgánicos están basados en el oxido de silicio, (SiO2), como formador de vidrio. La subunidad fundamental en los vidrios de sílice es el tetraedro SiO4 - en donde un átomo (ion) de silicio (Si4 +) se encuentra covalentemente enlazado a cuatro átomos de oxigeno. En la variedad de Sílice cristobalita, por ejemplo, los tetraedros SiO4 se encuentran unidos compartiendo vértices en una disposición regular produciendo un orden de largo alcance, en un vidrio corriente de sílice los tetraedros están unidos por sus vértices formando una red dispersa sin orden de largo alcance.

El oxido de boro B2 O3, es también un oxido formador de vidrio y por si mismo forma subunidades que son triángulos planos con el átomo de boroligeramente fuera de plano de los átomos de oxigeno. Sin embargo. En los vidrios de borosilicato a los que se han adicionado óxidos alcalinos y alcalinoterreos, los triángulos de oxido BO3- Pueden pasar a tetraedros BO4- , en los que los cationes alcalinos y alcalinoterreos proporcionan la electroneutralidad necesaria. El oxido de boro es un aditivo importante para muchos tipos de vidrios comerciales, con vidrios de borosilicato y aluminoborosilicato.

PROPIEDADES DE LOS VIDRIOS

 

Los vidrios tienen propiedades especiales no encontradas en otros materiales de ingeniería. La combinación de transparencia y dureza a temperatura ambiente con suficiente fuerza y una excelente resistencia a la corrosión en la mayoría de los ambientes hacen al vidrio indispensable para muchas aplicaciones de ingeniería tales como construcción y vidriado de vehículos. En la industria eléctrica el vidrio es esencial para varios tipos de lámparas debido a sus propiedades aislantes y capacidad para suministrar un cierre hermético.

En la industria electrónica los tubos electrónicos también requieren el cierre hermético proporcionado por el vidrio, con sus propiedades aislantes para entrada de conectores. La alta resistencia química del vidrio lo hace muy útil para los aparatos de laboratorio y recubrimientos resistentes a la corrosión, conducciones y recipientes en la industria química.

Temperatura de transición vítrea:

El comportamiento frente a la solidificación de un vidrio es diferente del de un cristal, un liquido que forma un sólido cristalino bajo solidificación (p. ej., un metal puro) normalmente cristalizará en su punto de fusión con una disminución significativa de su volumen especifico, por el contrario un liquido que forma un vidrio bajo enfriamiento no cristaliza el liquido se vuelve mas viscoso a medida que su temperatura va disminuyendo y se transforma desde un estado plástico blando y elástico a un estado vidrioso, quebradizo y rígido en un margen reducido de temperaturas.

Métodos de conformado del vidrio:

Los productos de vidrio se fabrican calentando primero el vidrio a una temperatura alta para producir un liquido viscoso que seguidamente se moldea, contorna o lamina en la forma deseada.

  • Conformado en hojas y laminas: Se fabrica mediante el proceso de flotado, en el cual una tira de vidrio sale del horno de fusión y flota sobre la superficie de un baño de estaño fundido, la lámina de vidrio es enfriada mientras se mueve a través del estaño fundido y bajo una atmósfera controlada químicamente cuando su superficie esta suficientemente dura, la lámina de vidrio se saca del horno sin ser marcada mediante rodillos y pasa a través de un largo horno de recocido llamado Lehr, donde se eliminan las tensiones residuales.

  • Conformado por soplado, prensado y moldeado del vidrio: Artículos huecos como botellas, jarras, y envolturas de tubos luminosos se fabrican soplando aire para ajustar el vidrio fundido dentro de los moldes. Artículos planos como lentes ópticas y lentes para faros se fabrican prensando con un émbolo en el molde que contiene vidrio fundido. Muchos artículos pueden fabricarse moldeando el cristal dentro de un molde abierto. Un gran espejo de telescopio en cristal. Artículos con forma de embudo como tubos de televisor se fabrican mediante moldeado centrífugo. Los trozos de vidrio fundido desde el alimentador se arrojan en un molde rotativo que origina que el vidrio fluya hacia arriba para formar un muro de vidrio de espesor de aproximadamente uniforme.

  • Conformado por vidrio templado: Este tipo es reforzado enfriando rápidamente con aire la superficie de vidrio después de que éste haya sido calentado hasta cerca de su punto de reblandecimiento. La superficie del vidrio se enfría primero y se contrae, mientras el interior esta caliente y se reajusta a los cambios dimensionales con pocas tensiones, cuando el interior se enfría y contrae, la superficie ya esta rígida, con lo que se crean fuerzas de tensión en el interior del vidrio y fuerzas de compresión en las superficies, este tratamiento de “templado” aumenta la resistencia del vidrio porque las fuerzas de tensión aplicadas deben sobrepasar las fuerzas de compresión de la superficie antes que se produzca la fractura. El vidrio templado tiene una mayor resistencia a los impactos que el vidrio recocido y es alrededor de cuatro veces mas fuerte. Las ventanas de los automóviles y el vidrio de seguridad para puertas son artículos que han sido templados térmicamente.

  • Conformado por vidrio reforzado químicamente: La resistencia de un vidrio puede incrementarse mediante tratamientos químicos especiales. Por ejemplo, si un vidrio de alumino-silicato de sodio se sumerge en un baño de nitrato de potasio a una temperatura de aproximadamente 50°C por debajo de su punto de tensión (" 500°C) durante 6 a 10 h, los iones más pequeños de sodio, junto a la superficie del vidrio son reemplazados por iones potasio más grandes. La introducción de los iones potasio más grandes en la superficie del vidrio produce fuerzas compresivas en la superficie y las correspondientes fuerzas de tensión en su centro. Este proceso de templado químico puede ser usado en las secciones transversales más delgadas que puedan templarse térmicamente ya que la capa compresiva es muy fina, el vidrio químicamente reforzado se usa para aeronaves supersónicas y para lentes oftálmicas.

 

 

APLICACIONES DE LOS VIDRIOS


VIDRIOS

OBSERVACIONES

Sílice (fundida)

Difícil de fundir y fabricar , pero útil hasta temperaturas de 1000°C. Muy baja expansión y alta resistencia al choque térmico.

Sílice 96%

 

Fabricado a partir de vidrios relativamente suaves de borosilicato; se calienta para consolidar los poros.

Soda-cálcica: láminas de vidrio

Fácilmente fabricable. Usado ampliamente en una variedad de aplicaciones; cristalería, para ventanas, contenedores y bombillas eléctricas.

Silicato de Plomo

Funde fácil y es fabricable, con buenas propiedades eléctricas.

Alto contenido en plomo

El alto contenido en plomo absorbe los rayos X; el alto índice de retracción es útil en lentes acromáticas.

Vidrio para cristal decorativo.

Aplicaciones ópticas y vidrios de mesa.

Ventanas de radiación y lámparas de televisión.

Borosilicato: baja expansión

Baja expansión, buena resistencia al choque térmico y estabilidad química. Utilizando ampliamente en la industria química.

Para utensilios de cocina, instrumentos de laboratorio, grandes espejos de telescopios, hornos y lámparas reflectoras.

Baja pérdida eléctrica

Bajas pérdidas dieléctricas.

Aluminoborosilicato: aparatos estándar

Contenidos altos en alumina y bajos en óxido bórico mejoran la durabilidad química.

Bajo alcali (Vidrios E)

Usado ampliamente para fibras en compuestos de resina de vidrio.

Aluminosilicato

Resistencia a altas temperaturas, baja expansión.

Cerámica vítrea

Cerámica cristalina fabricada por desvitrificación del vidrio.

Fácil fabricación, buenas propiedades. Diferentes vidrios y catalizadores.



"Integrantes"
 
Juan Alberto Mendoza Hernández.
Juan Jose Porras Hernández.
Ivan Ramirez Perez.
Javier Gachuz Granados.
Publicidad
 
 
Hoy habia 8 visitantes (26 clics a subpáginas) ¡Aqui en esta página!
=> ¿Desea una página web gratis? Pues, haz clic aquí! <=